Systems of quadratic forms II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Synthesis of dissipative systems using quadratic differential forms: part II

In this second part of this paper, we discuss several important special cases of the problem solved in Part I. These are: disturbance attenuation and passivation, the full information case, the filtering problem, and the case that the to-be-controlled plant is given in input–state–output representation. An interesting aspect is the notion of full information, which we define in terms of the obs...

متن کامل

Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II

Let D = 1 be a positive non-square integer and let δ = √ D or 1+ √ D 2 be a real quadratic irrational with trace t = δ + δ and norm n = δδ. Let γ = P+δ Q be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal Iγ = [Q, δ + P ] and an indefinite quadratic form Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t − 4n. In the first section,...

متن کامل

Dimensions of Anisotropic Indefinite Quadratic Forms Ii

Let F be a field of characteristic different from 2. The u-invariant and the Hasse number ũ of a field F are classical and important field invariants pertaining to quadratic forms. These invariants measure the suprema of dimensions of anisotropic forms over F that satisfy certain additional properties. We prove new relations between these invariants and we give a new characterization of fields ...

متن کامل

Quadratic Minima and Modular Forms Ii

Carl Ludwig Siegel showed in [Siegel 1969] (English translation, [Siegel 1980]) that the constant terms of certain level one negative-weight modular forms Th are non-vanishing (“ Satz 2 ”), and that this implies an upper bound on the least positive exponent of a non-zero Fourier coefficient for any level one entire modular form of weight h with a non-zero constant term. Level one theta function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1984

ISSN: 0035-7596

DOI: 10.1216/rmj-1984-14-4-973